
Journal of  Statistical Physics, Vol. 78, Nos. 5/6, 1995 

Phase Transitions in a Driven Lattice Gas 
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We report on a Monte Carlo study of ordering in a nonequilibrium system. The 
system is a lattice gas that comprises two equal, parallel square lattices with 
stochastic particle-conserving irreversible dynamics. The particles are driven 
along a principal direction under the competition of the heat bath and a large, 
constant external electric field. There is attraction only between particles on 
nearest-neighbor sites within the same lattice. Particles may jump from one 
plane to the other; therefore, density fluctuations have an extra mechanism to 
decay and build up. It helps to obtain the steady-state accurately. Spatial 
correlations decay with distance according to a power law at high enough 
temperature, as for the ordinary two-dimensional case. We find two kinds of 
nonequilibrium phase transitions. The first one has a critical point for half 
occupation of the lattice, and seems to be related to the anisotropic phase 
transition reported before for the plane. This transition becomes discontinuous. 
for low enough density. The difference of density between the planes changes 
discontinuously for any density at a lower temperature. This seems to corre- 
spond to a phase transition that does not have a counterpart in equilibrium nor 
in the two-dimensional nonequilibrium case. 

KEY WORDS:  Driven lattice gas; steady nonequilibrium states; non- 
equilibrium phase transitions; nonequilibrium critical behavior; Monte Carlo 
simulation. 

1. INTRODUCTION 

Quantitative studies by the Monte Carlo (MC) method of phase transi- 
tions in lattice gases with particle-conserving dynamics are difficult. In 
practice, a large, often prohibitive amount of computer time is required to 
obtain reliable results. The reason is that, besides critical slowing down, a 
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system exhibits slow relaxation toward ordered steady states if the only 
mechanism is (e.g.) nearest-neighbor exchanges, i.e., diffusion of particles. It 
has been reported for the driven lattice gas system TM 2) (DLG), for example, 
which models certain features of solid electrolytes. ~3j Previous numerical 
work~4 91. 2 has revealed that one may obtain statistically good enough 
stationary mean values for short-ranged order parameters and electrical 
currents, for instance, while (e.g.) the structure function stabilizes very 
rarely if at all within actual computer runs. Thus, much of the interesting 
behavior of the DLG as one varies its parameters is known within 
approximations, namely mean-field treatments of the lattice system (~1 and 
field-theoretic studies of related continuum models. ~~ ~3~ As a consequence 
of the intrinsic difficulties in obtaining good data for the DLG (where 
anisotropies, slow spatial decay of correlations ..... and lack of non- 
equilibrium theory add up to slow diffusive relaxation under a conserved 
density), a controversy exists concerning critical behavior. It~ That is, MC 
data for the two-dimensional DLG under a saturating field (2d DLG 
hereafter) seems to indicate that the critical exponent for the order 
parameter is f l~  I/4,171 while field theory suggests that f l=  1/2 subject to 
possible logarithmic corrections. (~~ 

We report in this paper on the results from an extensive MC study 
of a variation of the 2d DLG. Our model incorporates an additional 
degree of freedom, i.e., the particles can hop to other lattice. As a conse- 
quence, (slow) diffusion within the plane is not the only mechanism that 
allows for relaxation. This occurs also at equilibrium, i.e., when the field 
is turned off, in which case a simple relation may be stated rigorously 
between the behavior of such modification and the ordinary 2d case. (~41 
The relation is conceptually less simple out of equilibrium. This inter- 
esting case that involves the effects of both an external force and a 
conserved density on layered systems is studied in detail below. It 
may have some relevance for quasi-two-dimensional conduction that has 
been reported (e.g.) for some solid electrolytes c~'3~ in which ions are 
compelled to move within a plane geometry that comprises a few layers 
only. We have also addressed the relation between the steady states 
for this system and for the ordinary 2d DLG. It has led us to some 
interesting conclusions about critical behavior in nonequilibrium phase 
transitions in anisotropic systems. 

The basic model is defined in Section 2, which contains also a descrip- 
tion of a few general properties of the model and some details of its MC 

-' The standard DLG is modified in ref. 9 by adding a small amount of creation-annihilation 
to the original diffusion process to speed up the relaxation in the computer. 
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imp lemen ta t ion .  Some m a i n  results from our  M C  s tudy  are repor ted  in 
Sect ion 3. Sect ion 4 con t a in s  a brief  discussion.  

2. T H E  M O D E L  S Y S T E M  

Let us deno te  by 2 the o rd ina ry  latt ice gas tlS) on  a finite square  lattice 
of volume 121 with per iodic  b o u n d a r y  condi t ions .  The  conf igura t iona l  
energy is 

H ( e ) = - 4 J  ~ fi,fi~, J > 0  (2.1) 
I r - s l  : I 

where 6 =  {fir; r E Z  2, f i r = 0 ,  1}, an d  the s u m is over  all pairs  ( r , s )  of 
neares t  n e i g h b o r  ( N N )  lattice sites. Thus ,  p -  12]-1 Z r  fir is a densi ty,  and  
N - p  121 is the n u m b e r  of particles (i.e., states fir = 1 ); the sites for which 
fi, = 0 are empO,. In  the inf in i te -volume limit,  2 is k n o w n  to exhibi t  a criti- 
cal po in t  for p = 1/2 at the Onsager temperature Tc (we use T c = 2.269J/kB 
as a un i t  for t empera tu re  t h roughou t ) ,  a n d  a coexistence l ine occurs for 
p :~ 1/2 at t empera tu re  TLG(p); cf. Tab le  I. 

Next ,  cons ider  the system A - 2 1  u 22 of vo lume  IAI = 2 121; here bo th  
2, and  22 are defined like 2, an d  21 c~ 22 = ~ .  T h a t  is, A consists  of two 
twin square  lattices such that  any  site has five N N  with one  of them in the 
o ther  plane. The  conf igura t ions  of A have energy 

HA(o) = H(61 ) + H ( 6  2) (2.2) 

Table I. Variation with Density of the Transition Temperature for Several 
Systems in Units of the Onsager Critical Temperature Tc" 

System 2 A 2 ~ A :,:. A ~, 

p TLO T* T~ T* T~ 

0.50 1 1 1.38 1.30 0.95 
0.35 0.99999 ~ 1 1.30 1.24 0.89 
0.20 0.997 0.97 1.16 1.14 0.88 
0. I0 0.964 0.93 0.84 0.93 0.85 

'* TLG is for the ordinary 2d lattice gas, 2; thus, T L G ( P  = 1/2) = T c by definition. T* is the MC 
estimate for the quasi-2d equilibrium system A. "4) T~ is for the 2d DLG as reported here 
and in ref. 8. T~ is for the onset of the anisotropic, striplike segregation of the liquid in one 
of the planes only, as observed for the nonequilibrium system A~ at low enough 
temperatures. T* is for the formation of strips within the two planes of A~ at a relatively 
higher temperature. Error bars for A ~ are typically smaller than 0.02 for p = 1/2 and at least 
0.05 for p =0.1; cf. Section 4. 
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where 6 ;=  {a r ; r  ~ Z 2 } represents a configuration of 2~, and i = 1, 2. Conse- 
quently, any two particles interact with each other [in fact, they attract 
given the restriction to J >  0 in (2.1)] only if they are at NN sites such that 
both belong either to 2~ or to 22; i.e., all bonds between the planes are 
broken. No restriction exists on the possible configurations 6 of A, 
however; in particular, any given particle has access to any of the two 
sublattices. 

Irreversibility is introduced into the problem by considering the 
following Markovian time evolution. The probability of any configuration 
at time t, to be denoted PE(6; t), is governed by the master equation TM 2) 

OPe(6; t)/Ot = ~ [cE(6'~; r, s) PE(rrs; t) -- CE(6; r, s) PE(6; t)] (2.3) 

Here, 6 '~ represents 6 with the occupation variables at NN sites r and s 
exchanged, and ce(6; r, s) is the transition probability per unit time for 
that exchange, given 6. Consequently, time evolution proceeds by 
stochastic jumps of particles to NN empty sites that includes jumps from 
one plane to the other. The jumps are driven by the competition between 
a heat bath at temperature T and an external electric field E. The latter is 
constant in both space and time; it points along one of the principal lattice 
directions. Such a process may be simulated by choosing the transition 
probability in (2.3) as 

cE(6;r ,s)=f[~nA(6"s)--~nA(6)--E'(r--s)(ar--a~)]  (2.4) 

where/~ = (kB T)-  ~ is the inverse temperature, and Ir - sl = 1. The function 
f (X)  is arbitrary except that f ( X ) = e - X f ( - X ) ,  which guaranties that 
c~-(6; r, s) satisfies the familiar condition of detailed balance for E = 0 [it is 
convenient to require also f ( 0 ) = l ,  and f ( X ) ~ O  as X ~ ] .  Thus, 
(2.3)-(2.4) imply an asymptotic tendency toward canonical equilibrium for 
E = 0 .  For E=A0, cE(6;r ,s )  introduces a preferential hopping in the field 
direction that impedes detailed balance except locally; more explicitly, the 
electric energy cannot be added to the configurational energy in the 
Hamiltonian, but the work done by the field has been included in (2.4), 
which induces a net steady dissipative current (e.g.) for periodic boundary 
conditions (cf. ref. 2 for further discussion and for an alternative way to 
induce the current). Let us denote by 2E and A e the nonequilibrium 
systems one obtains from 2 and A, respectively, under dynamics 
(2.3)-(2.4); 2E corresponds to the 2d DLG; A E is the specific system of 
interest herc  

The (equilibrium) phase diagram for A (i.e., AE when the field is 
turned off) is interestinglY4): For p = 1/2 below a temperature T*, a liquid 
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phase of density pL(T)=po(T) fills one of the planes and a gas of density 
pc(T) = 1 -  po(T) fills the other plane; po(T) is the Onsager solution, i.e., 

po(T) = 1/2+ 1/2{1 -- [sinh(2J/kBr)]-4} t/8, T <  T * ( p =  1/2) (2.5) 

For p < 1/2 below T*(p), one plane holds a liquid drop of density po(T) 
coexisting with gas of density 1 - p o ( T  ), and there is only gas in the 
other plane. Once the number of particles is given, the fraction x of 
liquid phase is smaller for A than for 2: some particles need to go to the 
other plane. That is, p = 1/2pG + 1/2[xpL + ( 1 - - x ) p c ] ,  and there follows 
x = 2 ( p - l + p o ) / ( 2 p o - 1  ). The particles tend to be distributed homo- 
geneously for T>T*(p) ,  where the latter is given by p = l - p o ( T * ) ;  
thus, T * ( p ) =  Tt.c(P) (the transition temperature for 2); in particular, 
T * ( p = l / 2 ) = T c  (cf. Table I). Therefore, it is natural to look at a 
(nonconserved) order parameter defined as the difference of density 
between the two planes, 

3p(T) = (1/2p) Ip,(T) - p2(T)I (2.6) 

Then, Ap(T)=p -~ [p-- 1 +po(T)[. This is continuous for any p and, in 
particular, it implies that A has the Onsager critical point for p = 1/2. 

We are interested in the present paper in the nature of the steady 
states for A~, which denotes A E within the limit E ~  ~ .  Some specific 
questions of interest are the influence on thermodynamics of the extra 
degree of freedom in A, the nature of the expected phase transitions in A o~, 
and their relation to the ones in 2~ (the 2d DLG). 

Some details of our computer implementation of A~ are as follows. 
One chooses an arbitrary initial configuration. In practice, we have used 
either a completely random one simulating a very high-temperature state 
with no field, or else an ordered one, e.g., all the particles arbitrarily 
clustered in only one plane (or as obtained in a previous experiment at 
a different temperature). Then, one performs the following MC step 
reiteratively: One selects at random a particle a , =  1 and one of its NN 
holes, a s =0,  and one attempts the interchange a r ~ - a  s. It is performed 
(rejected) if it implies a jump of the particle in (against) the direction of the 
field, which aims to simulate the case of an infinite or saturating field, 
E = ~ .  For attempted jumps perpendicular to the field, including jumps to 
the other lattice, one computes AH=HA(c~rS)--HA(~) [which does not 
involve any interaction between planes; cf. Eq. (2.2)] and uses the 
Metropolis algorithm, namely, the jump is performed with probability 
p = min{ I, exp(- /3  AH)}. The initial time evolution obtained in this way is 
discarded until the system reaches the stationary regime; this is decided by 
eventual statistical analysis of fluctuations and of the structure function. 
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The system sizes investigated in practice have ranged from IAI = 2 x 4 x 4  
to 2 x 140 x 140 (eventually, we also considered some rectangular 
geometries, i.e., 2 x Lv x Lh lattices). More than 10 6 MC steps (per lattice 
site) have been performed within the stationary regime to obtain good 
statistics for large gAl. Typical error bars are smaller than the size of the 
symbols used in the graphs, unless otherwise indicated. 

3. A N A L Y S I S  OF C O M P U T E R  R E S U L T S  

Direct inspection of MC configurations suggests the following picture. 
At high enough T, the particles distribute evenly between the two planes of 
A~. The distribution within each plane is not completely homogeneous, 
but some anisotropic clustering is evident (cf. Figs. la and ld, for 
instance). This was first reported for the 2d DLGt6'7); it reflects the 
anisotropy of the state, and perhaps also the slow decay of spatial correla- 
tions that seems to characterize the high-temperature phase; it is analyzed 
below. As T is lowered starting from a random distribution, the system 
exhibits phase segregation and apparently two kinds of transitions: 

(a) For very low temperature, say T <  T'~(p), the particle-rich or 
liquid phase is in one plane, as illustrated in Figs. lc and lf. This is 
qualitatively similar to the segregation that occurs in 2~ except for the 
existence of the second plane holding the gas. The field induces clear 
anisotropies below T'(p) .  That is, the liquid configurations are striplike 
oriented parallel to the field for p < 1/2, as for 2~.~7' 8~ Moreover, the gas 
seems to exhibit the sort of anisotropic clustering that we mentioned above 
for high T; see below. 

t (b) For not so low temperature, say T~_(p)> T>T~(p) ,  one 
observes that the liquid separates into two approximately equal strips, one 
on top of the other in a different plane; this is illustrated in Figs. lb and le. 
We remark that segregation in two planes has been reported to correspond 
for A to a sort of (rare, i.e., segregated) metastability~4); this is not so for 
A ~, however, where it seems to correspond to the only stable states within 
the indicated temperature range due to the existence of a current between 
planes along the interfaces. 

The relation between A and A o~ is not straightforward. A main effect 
of the field is to modify the interface (and, apparently, the correlations also; 
see below), so that the density of the liquid, which is po(T) at equilibrium, 
changes to p~(T). That is, p~(T)~  po(T), which makes the liquid fraction 
x and, consequently, the transition temperature differ from the ones for the 
equilibrium case. For simplicity, however, one may expect that A~o and 2o 
exhibit the same (second-order) phase transition, as is known to occur at 
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Fig.  I. S o m e  typi6al  s t e ady - s t a t e  c o n f i g u r a t i o n s  for the  two  p l anes  of  A,~;  the  field ac ts  
ho r i zon ta l ly .  (a)  In  the  o n e - p h a s e  reg ion  tbr  p = 1/2 at  T =  1.39Tc > T * ( p ) .  (b)  S a m e  sys t em 
wi th in  the  hl termediate  region, n a m e l y  at  T = I . 2 2 T c < T * . ( p = I / 2 ) ,  which  is a b o v e  
T ' ~ ( p = l / 2 ) .  (c) S a m e  sys t em at  T = O . 9 O T c < T ' . , ( p = I / 2 ) .  (d)  In  the o n e - p h a s e  reg ion  
for p = 0 . 2 0  at  T =  I . 1 5 T c  > T *  (p) .  (e) S a m e  sys t em ( p = 0 . 2 )  w i th in  the in termediate  

region, n a m e l y  at  T = O . 9 O T c < T * ( p ) ,  which  is a b o v e  T' . , (p ) .  (f)  S a m e  sys t em at  

T =  0 .70Tc  < T '~ (p ) .  
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equilibrium with 2 and A. (14) More specifically, let us assume that the 
density of the nonequilibrium gas in A~ is 1 - p ~ ( T ) ,  and that one has 
p = x p ~  + ( 1 - x ) ( 1 - P , o )  for situations such as those in Figs. lb and le; 
therefore, 

x= (p-- 1 + po~)/(2p~ - 1) (3.1) 

for A~.  This is to be compared with x = 2 ( p -  1 +po)/(2po- 1) for A. We 
' " 2  ' would expect accordingly that x = ( p - 1  +P~.J/t p ~ - l )  for 2~.  The 

simplest assumption is that both A~.~ and 2~ have the same critical point 
for p = 1/2. It seems roughly confirmed by our analysis below in spite of 
the fact that we have observed a different temperature for A~ than for 2~.  
For p < 1/2, the condensed plane of A~.~ for T <  T'~(p) would be identical 
to 2~o if p'~(T)=p~(T);  otherwise, the respective densities need to be 

' T related as p A [ 2 p ' ~ ( r ) - - l ] - - p ~ ( ) = p ~ . [ 2 p ~ ( T ) - - l ] - - p ~ ( r ) .  On the 
other hand, the difference between p~(T) and po(T) is large when con- 
figurations are striped due to the presence of the nonequilibrium interface 
all along the system. When no interface exists the difference between 
p~(T) and po(T) is extremely small in general; the small difference 
between the equilibrium and nonequilibrium phases that is observed then 
is to be associated with the different nature of correlations. This is also a 
main conclusion below. 

3.1.  O r d e r  P a r a m e t e r s  a n d  C u r r e n t s  

Natural order parameters for A~ are the difference of density between 
the planes, (2.6), and between the phases, 

6p(T) = PL(T) -- pG(T) = 2p ~ (T) -- 1 (3.2) 

3p(T) and Ap(T) are closely related to each other only if our assumption 
(3.1) holds, so that we find it convenient to refer to both. We have 
estimated p~(T) by two methods. When at least one plane contains gas 
only, a good estimate for the density of the gas pG(T) follows from the 
number of particles in that plane. Then, the fraction of liquid in the other 
plane may be estimated as x=Zili /]A[,  where lj ( i=  1, 2 ..... L) is the local 
width of the strip, and one has that p ~ ( T ) = p L ( T ) = 2 [ p - - p G ( T ) ] / x +  
pG(T). Our estimate is less accurate if both planes contain segregation; 
e.g., it occurs at high temperature, where it is difficult in practice to figure 
out the precise spatial extension of each phase due, in particular, to 
roughness of the interface. Anyhow, the data then confirm that 
P L + P G =  1 within less than 1% error for any p and T. On the other 
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hand, Fig. 2 and Table II depict the behavior of (3.2). The figure suggests 
that po:(T, p)=po(T, p) within statistical errors for T <  T'~(p) (which 
would imply a very simple picture for the nonequilibrium system at low 
T), but we believe that the small differences in Table II between 
po~(T,p=l/2) and po(T,p=l/2) on the one hand and between 
p~(T,p= 1/2) and po~(T, p=0 .35)  on the other are systematic; this is 
confirmed below by the behavior of correlations. That is, the non- 
equilibrium liquid and gas phases for p = 1/2 at T <  T~(p) differ from the 
equilibrium ones. Table II shows that r 1/2) is larger in non- 
equilibrium, and the difference seems to increase with T (while we do not 
find any difference for T~<0.6Tc). What is clearly observed in Fig. 2 is 
that ~p(T, p) [ = 2 p ~ ( T ,  p ) -  1] is discontinuous at T =  T*(p) for 
p ,~ 1/2; it also seems to be discontinuous at T =  T'(p) for any p, namely, 
~p(T) apparently increases when one crosses T~(p) for any p as T is 
increased. The latter fact probably reflects a similar discontinuous 
behavior of the interface. One also observes an apparent tendency of 
6p(T) to decrease with decreasing p for a given T <  T~(p) (cf. Table II). 
These facts are confirmed by Ap(T, p) when possible; anyhow, our error 
bars are relatively large for p < 1/2. 
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0.5 
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Fig, 2. The difference of density between the phases, (3.2), as a function of T for repre- 
sentative values of p: p = 0.5 (triangles), 0.35 (circles), and 0.2 (asterisks). (Some of the values 
plotted here are reported in Table II.) The solid line is the Onsager result; the dashed line is 
a guide to the eye. The inset shows the case p = 1/2 in more detail. Typical error bars here 
are of the order of the symbol sizes. 
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Table II. 

Aehahbar  and Marro  

M C  Estimates for the Parameter  (3.2) for  Representative Values of 
T for  p = 1 / 2  and 0.35 a 

Nonequilibrium 
Onsager 

TIT c p = 1/2 p = 1/2 p = 0.35 

0.6 0.993 0.993 0.984 
0.7 0.981 0.982 0.967 
0.8 0.955 0.959 0.940 
0.9 0.895 0.906 0.893 
0.93 0.863 0.870 - -  
0.98 0.748 0.842 - -  

The table reveals systematic differences that are not obvious on the scale of Fig. 2 (cf. Fig. 10 
for a graphic, independent confirmation of such a difference for T= 0.8T c and p = 1/2). The 
Onsager result (for E=0) is also shown. 

We have found it convenient  to mon i to r  the underlying an iso t ropy  by 
measuring at  each plane, i =  1, 2, the pa ramete r  c4~ 

m, = 1 /2 [p ( l  - p ) ]  - , /2 I ( M ~  ) - (M2v)11/2 (3.3a) 

where 

Mhlv ~ = 121 ~ (1 -- 2a~) (3.3b) 
h(v)  ) 

Then, we define the max imum 

m = max {m l, m2 } (3.3c) 

Here, h (v) indicates that  summat ion  is a long the hor izonta l  (vertical)  
direct ion on each plane; we define the hor izonta l  direct ion as the one along 
which the external  field is directed. The behavior  of m and Ap(T), as 
defined in (2.6), is depicted in Fig. 3. This confirms that  the phase trans- 
it ion at T' (p)  is d iscont inuous for any p, while the one at the higher tem- 
pera ture  T*(p) is d iscont inuous  for p ,~  1/2, but  the discontinuit ies  are 
very small, if any, as one approaches  p - 1 / 2 ,  and T*(p= 1/2) should 
correspond to a critical point  for the infinite system. The phase d iagram is 
sketched in Fig. 4, and the values for T'~(p) and T*(p) are repor ted  in 
Table I. It  is interest ing to remark  that  the t ransi t ion at T*(p) is the one 
to be compared  to the t ransi t ion at T~(p) for 2~ .  We believe that  our  
values for T*(p) in Table I are more  reliable as p is increased, and that  
they are ra ther  good estimates for p/> 0.35. 
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Fig. 3+ The var ia t ion with temperature  of the order  parameters  m (circles) and zip 
(asterisks),  as given, respectively, by (3.3) and (2.6), for p = 1/2 (a), 0.35 (b), 0.2 (c), and 0.1 
(d). The indicated t ransi t ions as one increases temperature  are between states with one strip, 
with two strips, one at each plane, and with no strips, respectively. 

In fact, we have generated data of very good quality for p = 1/2 to 
study critical behavior. Figure 5 illustrates m(T) for several system sizes 
and the corresponding extrapolation for the infinite lattice, IAI--* oo. No 
definite support was found for elaborate scaling formulas in the literature 
(see below); therefore, our extrapolation is the simplest one based on the 
apparent fact that the nonequilibrium interface induces strong surface 
effects that are qualitatively similar to the ones for the Ising model with free 
endsY 7) The comparison in the figure between m(T) and the Onsager solu- 
tion depicts a departure of the former from the equilibrium case (which is 
also quite evident near the critical temperature; a similar depar- 
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ture occurs from other predictions). Further analysis of the data for the 
infinite lattice under the assumption 

m ~ I T -  T*(p  = 1/2)1B as T-~ T*(p  = 1/2) (3.4) 

shows that fl is close to 0.27. On the contrary,  the Onsager case fl = 1/8 is 
excluded [nor  do the data admit fl = 1/2 in (3.4) even if one allows for a 
(weak) logarithmic correction].  Figure 6 contains some evidence of  these 
facts, which are confirmed by independent analysis below. It suggests again 
the crucial effect of  the field due to the existence of a nonequilibrium inter- 
face. Our  best estimates for the infinite lattice are T ~ ( p -  1/2)--  1.30 + 0.01 
and f l=0.27_+0.02 (the critical amplitude follows as B = 1 . 2 5 + 0 . 0 3 ) .  
Furthermore, we have verified that Ap(T) and 6p(T) have a similar critical 
behavior near T*(p  = 1/2), as expected [ the same method clearly indicates 
that 6p is characterized by f l~ l / 8  for E = 0 ,  as predicted by (2.5); 
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Fig. 4. The phase diagram indicating T*(p) and T'.~(p); cf. Table I. The bars may be inter- 
preted, approximately, as the observed limits of metastability. The solid line corresponds to 
the Onsager solution; the dashed lines are guides to the eye. 
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Fig. 5. The temperature variation of the parameter m in (3.3) for p = 1/2 and lattice sizes 
L = 16 (crosses), 32 (squares), 64 (asterisks), and 128 (circles). The solid line is a fit to the 
extrapolated values for [AI--* co (solid triangles) giving approximately 1/4 near the critical 
temperature. The Onsager solution (dashed line, corresponding to 1/8) and corresponding 
MC results for L =  128 (asterisks) are indicated for comparison purposes; we have also 
indicated the mean-field result producing ,6'= 1/2. The data are normalized to the corre- 
sponding critical temperature for each model (but no shift or scaling has been performed 
within the vertical axis). 
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cf. Fig. 5]. According to the assumed relation between Ao~ and 2o (and 
our claim about the good quality of the data for p = 1/2), this value for 
fl should perhaps replace the one in ref. 7 for the 2d DLG. The fact that 
f l~  1/4 for A~ and for 2~ is in agreement with previous MC experiments, 
which suggested values of fl close to 1/4 for several other nonequilibrium, 
2d DLG-related conservative lattice systems that involve anisotropiesJ 9 ~6-~9) 
(Approximately the same value has been reported for a 2d field-theoretic 
driven system when the applied field is random, Cz~ but not for the present 
case of constant field. I~~ Furthermore, the MC study of a lattice model of 
a fluid under shear gives some indications that 1/2 > fl > 1/8.121~ Thus, one 
may argue that a universality class exists corresponding to nonequilibrium 
systems such as the ones defined here and in refs. 7, 9, and 16--21. Anyhow, 
there is strong numerical evidence supporting 1/2 >/~ > 1/8 for nonequi- 
librium lattice gases, which requires a theoretical explanation. It would also 
be interesting to look experimentally at critical behavior in materials under 
nonequilibrium anisotropic conditions. 

Further quantities of interest are the currents, energy, and "specific 
heats." The particle current in the direction of the field, say j.,., is propor- 

I l.; // 7 

- " . ~ . 0 . 2 7  "----:--"~ -'- 

. 2.5 

- . 1 / 8  - % .  - 

0.5 

0 
0.9 T/T c T~. 1.4 

Fig. 6. Some evidence of a critical behavior of m(T) for the infinite system that is charac- 
terized by an exponent fl ~ I/4, as explained in the text. The inset shows a log-log plot of the 
data assuming T *  = 1.3; this gives fl = 0.27; the lines of slope 1/8 and 1/2 are also shown. The 
main graph shows plots of m ~/p for different values of/~ (as indicated) versus T that avoids 
any assumption about T * ;  this gives a straight line only for fl very close to 0.27. The solid 
circles correspond to the data for n ~/t~ [cf. Eq. (3.7)] to show consistency of other order 
parameters with fl ~ 0.27 also. 
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tional for large field to the density of particle-hole pairs averaged over the 
planes, say e; according to (2.1)-(2.2), the latter is a measure of the system 
energy. (7) The behavior of e andjx is illustrated in Fig. 7. This reveals again 
the existence of the two mentioned phase transitions for each p. It is evi- 
dent from the temperature derivative of e, say Oe/dT. For p = 1/2, this 
derivative exhibits two pronounced peaks at T ~  and T * ,  respectively; the 
latter is such that no logarithmic divergence but ct > 0 seems suggested; our 
data are not enough to conclude about this matter, however. We have 
studied also the mean square fluctuations corresponding to the mean e, say 
6e. No evidence of a fluctuation-dissipation theorem for the 2d D L G  was 
reported earlierm; we have observed, however, that 6e and Oe/aT seem to 
tend to exhibit the same structure near T *  as IA[ is increased [while 6e(T) 
shows no evidence of such structure for L ~< 64, which may explain the 
reported observation (7~ for the 2d D L G ] .  This is interesting because the 
continuum model that has been compared "~ to the D L G  seems based on 
the breakdown of a fluctuation-dissipation relation; such a behavior is also 
not contained in a D L G  model worked out analytically earlier, m 

1.6 

e 

0 . 8  - 

0 
0.5 

r 
/ 

/ 

' ~  0.05 

+ 

++ 

/ ~_.4o 

.1-- ~ I'll-- -- ~ " ' ~ ;  , , 
~)~5 0.95 T/T c 

_~4-  I 

O09 "~ 

~,%--+  

1.25 
T / T  c 

Fig. 7. The energy (density of particle-hole bonds averaged over the two planes) versus 
temperature for a finite lattice with p = 1/2. The two phase transitions are revealed by the two 
abrupt changes of slope that are evident to the eye. The inset shows the horizontal particle 
current for p =0.35 (circles), 0.20 (crosses), and 0.i0 (squares). 
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Fig. 8. The short-range order parameter, as defined in the text, for the infinite lattice. The 
existence of a peak at T *  seems to exclude the possibility that fl = 1/2. ~-'-h The inset shows 
data for finite L: the peak locating the transition temperature increases and shifts toward 
larger temperatures as L is increased. 

Following a previous suggestion, (22~ we have computed the quantity 
a= [(1/4)(2-e)Z-m2]/e2, which plays the role of a short-range order 
parameter. The fact that a exhibits a well-defined peak at T*(p = 1/2) in 
Fig. 8 indicates (22) that the critical behavior of the system cannot be of the 
Landau type, e.g., fl # 1/2. We have also found very useful the parameter 
a (which exhibits simple scaling behavior) in making precise our values for 
the transition temperatures for the finite lattice and thus for IAI ~ ~ .  

3.2.  C o r r e l a t i o n s  

An interesting question is the behavior of spatial correlations�9 We have 
monitored the spin-spin correlation function at each plane, i =  I, 2, 
namely, 

G,(r) = IAI -~ (4 ~ (ac- p~)(a~+c- p,) 1 (3.5) 

where ( . )  denotes the MC average over configurations�9 We define G(r) 
(unless otherwise indicated) as either the case of (3.5) which corresponds 
to the plane with segregation or else G( r )=  1/2[G~(r)+G2(r)] when 
segregation occurs in both planes. Moreover, it is advisable to study 
separately the two main directions; therefore, we have computed the 
horizontal spin-spin correlation function, say Gh(x, 0), where x refers to 
the direction of the field [for simplicity, we denote this function as Gh(r), 
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with r - x ,  hereafter], and the vertical component ,  denoted Gv(0, y) [o r  
simply Gv(r), r = y] .  The structure function is defined as 

S ( k ) = ( 2  lA l ) - '  ( ~ 1 2 e i k " ( a r - p ) 1 2  ) (3.6) 

where k = (kx, k,,, k:), where k.,. and k.,, describe the first Brillouin zone and 
kz = 1 or 0 refers to the two planes. 

Unlike typical studies of both the ordinary lattice gas and the DLG,  
the structure function (3.6) remains rather stable in practice during the 
stationary regime (see the end of Section 2) in our  experiments. For  
p = 1/2, (3.6) is observed to exhibit a pronounced peak at k = (0, 0, 1 ) for 
T < 0 . 9 5 T c ,  which corresponds to having phase segregation in only one 
of the planes, while the peak moves toward k =  (1, 0, 0) as T is increased, 
which corresponds to the formation of two strips. The situation is similar 
for p <  1/2. This phase transition as well as the one at higher tem- 
perature described above is nicely confirmed by looking at the spin-spin 
correlation between planes, which provides also a simple method to 
estimate accurately transition temperatures for this system, as illustrated 
in Fig. 9. 

The components  of S(k) for appropriate values of k may also charac- 
terize the striped geometry. For  instance, one may study the parameter ~9~ 

�9 t~'~(c~176 (3.7a) n =  [ - ( m ~ ' " ) )  2 + , , , , h  , - - , , . . , ,  , 

where 

2LhLv ~ t , J a .... sin x (3.7b) 
. . =  . , =  

1 i 

G(r=l) 

0 

&,-~. 

,*,,, 
T '  

/k 

\ 
T *  

-1  • .  -A- I 
0.5 I 1.5 

Tfr c 

Fig. 9. The correlation function between planes (for r = 1), as a function of temperature, for 
p = 1/2 and L=70, confirming that T* ~ 1.3T c. 
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etc.; here, LhLv=121 = 1/2 IAI; generally, we considered the case Z h =  
Lv=L. We checked that the critical behavior of n(T) for p = l / 2  is 
consistent with the exponent fl,,~ 1/4 found above for m(T), zip(T), and 
6p(T) (cf. Fig. 6 for some evidence), but no further interesting qualitative 
facts ensued from our study of (3.7), which turns out to be less convenient 
for computat ional  purposes than the other parameters. 

A specific question here is the nature of correlations for p = 1/2 and 
T <  T ~ ,  where we have observed both that the (nonequilibrium) liquid 
and gas phases have a density very close to the equilibrium case, 
p~(T) ~ po(T), and that no interface exists (given that the liquid then fills 
completely one of the planes). The study of G(r) gives further support  to 
the result p~(T)v~po(T) which is suggested by the raw data, e.g., in 
Table II; cf. Fig. 10. The latter indicates that Gh(r) differs essentially 
depending on whether E =  0 or E4 :0 ,  and that G~(r)et Gv(r) for E =  oo as 
long as r remains small enough, while the two functions become equal for 
r > 3 .  Figure I1, on the other hand, illustrates the case p <  1/2 and 
T< T'~(p), where one still has that p~(T),~ po(T) (cf. Fig. 2), but there is 
an interface, unlike for Fig. 10. Figure 11 reflects the differences in Gv(r) 
between the equilibrium and nonequilibrium cases for large r due to the 
existence of a special interface. For  qualitative purposes, in Fig. 12 we com- 
pare Gh(r) and Gv(r) for p = 1/2 at different values of the temperature 
which correspond to the three kinds of steady states the system may 
exhibit. 

0.93 

G(r) 

0.91 

I 

A 

Q 

A 

AAAAA~AAAA~AAAAAAAAA~&&&AA&AAAA~, 

I 
0 35 

r 

Fig. 10. The correlation function for p= 1/2, T=0.8T c (<T~), and L=70. The circles and 
the triangles correspond to horizontal correlations for E=ov (nonequilibrium) and E=0 
(equilibrium), respectively; the asterisks represent vertical nonequilibrium correlations. In 
accordance with Table II, the two asymptotic values are p~ =(0.959) 2 and pg=(0.955) 2, 
respectively, as expected. 
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Fig. 11. The asterisks represent the function G~(r) for p < 1/2 and T <  T~(p)  in the plane 
which contains the striped liquid; the circles represent the corresponding result at equilibrium 
( E =  0). The inset is for the horizontal correlations within the gas plane for E =  0 (circles) and 
E =  ao (asterisks). 
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Fig. 12. The nonequilibrium correlation functions Gh(r) (solid circles) and Gv(r) (squares) 
for L = 7 0 ,  p =  1/2, and T/Tc=0.80 (main graph), 1.21 (lower inset), and 1.32 (upper inset). 
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As a paradigm of a nonequilibrium lattice gas with conserved density, 
the 2d DLG exhibits slow, power-law decay of G(r) with r at high 
temperature (instead of the exponential relaxation that characterizes the 
equilibrium systems except at criticality). ~2-~ The question is whether this 
occurs for A o~.. The latter exhibits anisotropic clustering in the one-phase 
region, as described above, but this is not necessarily the hallmark of slow 
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Fig. 13. ( a )  T h e  h o r i z o n t a l  co r r e l a t i on  func t ion  for  different values of temperature, 
T/T c = 2.5 (circles) ,  3.5 ( squa res ) ,  4.5 ( r h o m b o i d s ) ,  5.5 ( t r iangles ) ,  and  6.5 (crosses). The inset 
is a linear fit to the same data, as indicated, to obtain the correlation length, i.e.. the slope 
of  the lines corresponds to I /~h(T) .  (b)  The same, for the vertical correlation function; the 
inset refers to the absolute value IGv(r) l .  
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Fig. 14. The relation between the two possible correlation lengths, each obtained as 
indicated by the insets in Fig. 13, to reveal that data are consistent with v~ ~ 2v~. 

decay of correlations. Furthermore,  one may argue that correlations should 
perhaps not decay here as slowly as for 2~ given that particles can hop to 
another plane in A~, (e.g., the structure function is more easily stabilized 
due to this effect). The latter expectation is not confirmed, however, in a 
detailed study of 2 x 140 x 140 lattices for temperatures 1.4 < T/Tc < 6.5, 
which reveals a behavior similar to the one for the 2d D L G  at high T; cf. 
Fig. 13. That  is, a log-log plot of both Gh(r) and Gv(r) produces straight 
lines of slope - 2  for any 2 ~< r ~< 20 (the noise dominates for r >  20, but one 
may guess the same behavior from the data)  for any T>~2.5Tc; this 
supports the expected result G(x, y ) =  (ax2-by2)(x2+ y2)-2. 

One may estimate the correlation length from the phenomenological  
fit Gh, v(r)~[l+(r/~h.v)2] -I, which is confirmed by the data for large 
enough r. The values of ~h and ~v obtained in this way (cf. the inset in 
Fig. 13) have critical behavior at T*(p = 1/2) which may be characterized 
by the exponents v h and vv, respectively. As illustrated in Fig. 14, the data 
provide some evidence that vh ~2vv.  Moreover,  we have estimated that 
v h = 0.7 __+ 0.2 and vv = 0.4 ___ 0.2; this is to be compared to the field-theoretic 
values Vh = 1 + e/6 and Vv = 1/2 for e = 5 -- d~176 cf. Section 4, however. 

We have also compared the high-T (gas) phase and the gas phase that 
coexists with liquid at low enough T (Fig. 15). Figure 15a reveals that ver- 
tical correlations are very similar to each other, while horizontal ones dif- 
fer, except perhaps for small r. Figure 15b indicates that there is no more 
evidence of an exponential behavior for low T than for high T, and that the 
power of - 2  is not  supported at low - T ,  while it is a reasonable descrip- 
tion of the data at high T. 
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Fig. 15. A comparison of the high-T (squares) and low-T (asterisks) gas phases; the latter 
coexists with liquid. (A double axis representation is used to enhance the comparison.) 
(a) The vertical (main graph) and horizontal (inset) correlations for TIT  c = 1.5 and 0.93, as 
indicated. (b) The horizontal correlation for TIT  c = 2 (squares) and 0.93 (asterisks). The main 
graph is In G versus i', looking for exponential behavior. The inset is a log-log plot looking 
['or power-law behavior; the solid line has slope - 2 .  
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3.3.  S c a l i n g  of  Da ta  w i t h  S ize  

Several sorts of finite-size scaling analysis have been proposed for 
anisotropic systems t7"9" lo, 24, 25) that are not always compatible with each 
other in spite of their phenomenological character. The simplest (i.e., avoid- 
ing any elaborate assumption) scaling-with-size ideas have been used by us 
to obtain some of the behavior for the infinite system (as reported above) 
from that for finite IA I. As a further test of critical behavior, we applied the 
approach in refs. 9 and 24 to a series of independent data. Let a (rec- 
tangular) system with linear dimensions L h and Lv be a subsystem of the 
infinite system with p = 1/2 at critical temperature T * .  Our infinite system 
consists of a 2 x 1 2 8 x 1 2 8  lattice; 25 subsystems of different sizes, 
Lh x L~ -~ 2 ~ x 2 j at each plane, with i, j = 2, 3, 4, 5, 6, have been considered. 
The system evolved for 3 x 105 MC steps (per site) and the stationary 
regime lasted for 5 x 105 MC steps more. We consider a local order 
parameter, say I~1, defined as the mean absolute value of the magnetiza- 
tion within subsystem l averaged over configurations (this is a fluctuation 
allowed for by particle diffusion between subsystems). 

Let us denote by Z the corresponding susceptibility. It is assumed from 
the start that Vh ~ Vv; then, the main predictions are that 

and that 

I~1 ~ L J / ~  for Lh '~ L vh/v" (3.8a) 

I~l ~ L ;  ~/vh for Lh ~> L~ h/~v (3.8b) 

Z oz LhL~'~/'v- v,/,,v for Lh ~ L~ "/'~ (3.9a) 

Z oc LvLrh/vh .... /vh for Lh ~ L~ "/'" (3.9b) 

The quantities g and [gJ[ are represented in Fig. 16 as a function of L h 

and Lv. The assumption (3.8) is apparently not supported by the data (for 
the system sizes that we have investigated), while there seems to be some 
weak support for (3.9). Thus, we do not give much credit to the numerical 
estimates we have obtained in this way, but it is worth mentioning that 
any manipulation of the data in the main graph of Fig. 16 (and, to some 
extent, also the one in the inset) on the assumption (3.9) [and (3.8)] gives 
support to our conclusion above that f l~  1/4. [I t  should perhaps be 
remarked that the amount of data that we have specifically generated to 
analyze (3.8) and (3.9) is small compared to that to which we refer in 
the rest of our study, but is comparable to previous studies of rectangular 
lattices. The same is true for a series of nonsystematic runs using 
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rectangular lattices we have performed in which (e.g.) some of the ques- 
tions raised in Figs. I0-15 were investigated. We thus came to believe that 
a rectangular geometry is probably not essential to generate good data, 
while it results in a much more involved computational procedure. The 
same may perhaps be suspected from the behavior of correlations in 
Figs. 10, 11, 13, and 14, for instance.] 

The attitude expressed by the referees during the editorial process has 
persuaded us to put some further effort into this problem. The question is 
to understand the classical behavior (e.g., f l= 1/2) that was apparently 
found for ).~ in one of the previous numerical experiments/~~ We have 
studied the case of one plane with rectangular, Lh x Lv geometries, looking 
for the anisotropic scaling behavior, 

M =  L~/3M(tL~/3) ,  t=  I T *  -- T I / T *  (3.1o) 

which is implied by the proposed continuum version of the DLG. The same 
quantities and even sizes have precisely been considered, while our MC 
runs have typically lasted four times or more as long (i.e., up to 9 • 1 0  6 MC 
steps) as the ones in ref. 10. As a first conclusion, we have thus confirmed 
the explicit finding in ref. 14 that the consideration of a second, uncoupled 
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lattice is convenient to study numerically phase coexistence in systems with 
a conserved density. In particular, we have not been able to obtain for one 
plane data of a quality similar to that above for A o~. A second general 
conclusion is that the order parameter exhibits a weak dependence (if at 
all) on the proposed anisotropy parameter s = L~/3L~ -1. Therefore, it is dif- 
ficult to come to a definitive conclusion on this specific problem based only 
on numerical data. However, we have obtained the clear evidence depicted 
in Fig. 17 (see the figure caption). The departure from scaling behavior is 
even more dramatic (not shown) if one uses instead T *  = 1.38, which is 
rather suggested to us by the raw data, while one observes (see the inset 
in Fig. 17) a tendency to collapsing of data as/~ is decreased. It is doubtful, 
however, whether one should ascribe any significance at all to the latter 
fact. (The inset in Fig. 17 reveals a systematic--albeit  smal l - -depar ture  of 
the data in ref. 10 from the present case, which might be related to the 
relatively short duration of the runs in the former case.) 
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Fig. 17. A plot of the order parameter, as suggested in ref. 10, for 2 o with fl = 1/2, v h = 3/2, 
and T* = 1.418. Different symbols correspond to different sizes as indicated; the solid circles 
correspond to data reported previously. "m The inset shows the same, but for//= 1/4. 
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4. A B R I E F  D I S C U S S I O N  

We have related to each other the nonequilibrium system A~,  the 
ordinary two-dimensional DLG, 2~_, and the ordinary lattice gas, 20; a sim- 
ple relation exists between the latter and the lattice gas in two planes, Ao .~141 
The nature of both short- and long-range correlations and the existence for 
some values of T and p of a nonequilibrium anisotropic interface whose 
length is proportional to one of the system linear dimensions make A s  
essentially different from its equilibrium counterpart Ao. There seems to be 
a relation between A ~. and 2~., however, that, in particular, makes the study 
of an apparently artificial model relevant for nonequilibrium theory; A ~ has 
an intrinsic interest and perhaps some practical relevance as well, as 
indicated in Section 1. [The relation between A~. and 2~ has been studied 
analytically within a mean-field approximation (also to be published).] 

The MC study of A~ turns out to be more rewarding than that of ~.~ 
(and even more than that of the familiar 20). In any case, our study should 
be considered as quantitative only for p = 1/2, which corresponds to the 
unique critical point. We have determined some properties of the latter, 
e.g., the critical temperature is 30% above the Onsager result, and the 
critical exponent for the order parameter is f l~  1/4 (probably fl~0.27). 
The field-theoretic value fl = 1/2 for a related continuum model may be dis- 
carded with as much confidence as the equilibrium case fl = 1/8. We cannot 
make assertions with such conviction about the other exponents. There is 
some weak evidence that ~ > 0  and, assuming that horizontal (the field 
direction) and vertical correlations should diverge differently (as for field- 
theoretic models), we obtain that Vh ~ 2vv for the corresponding exponents. 
Much more data would be needed to conclude more definitely about the 
last two facts, which to our knowledge, have not been observed before. We 
remark, however, that further numerical effort requires a better under- 
standing of scaling behavior for the present problem. In fact, no support 
has been obtained here for the sort of scaling in refs. 10 and 24. In par- 
ticular, we have measured fl ~ I/4 for both cases L,  = Lv and Lh ~ Lv, and 
it is our belief that one should not rule out completely for the moment the 
possibility that effective vh and vv tend to each other as one approaches the 
critical point. Anyhow, the fact that the size more than the shape of the 
system matters for critical behavior is suggested by our study. On the other 
hand, it may be mentioned that, from a purely computational point of 
view, the situation when one tries to estimate critical indexes is not worse 
here due anisotropies than for the equilibrium case E = 0, e.g., critical slow- 
ing down seems a more important effect than slow spatial decay of correla- 
tions. For practical purposes, it is also noticeable that the facts that (3.3) 
exhibits relatively large finite-size effects at high temperature and misses 
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some important information about the spatial distribution of domains 19" ~ol 
do not seem to diminish its utility in the present problem; e.g., (3.3) is com- 
putationally convenient, and we have checked that it has similar qualitative 
and critical behavior as (2.6), (3.2), and (3.7). 

Our study of A~ for p < 1/2 should be viewed as qualitative or, at 
most, semiquantitative, i.e., our computation of transition temperatures is 
hampered by important metastability for p ,~ 1/2, and we never estimated 
the size dependence for off-critical densities. Moreover, a peculiar finite-size 
effect that has been revealed in the study of A t~4~ is present here. That is, 
for a finite system the fraction of the liquid phase for given p is smaller for 
A~ than for 2~. ; therefore, the coexistence line for the former occurs before 
that for the latter if one increases T for given p. As in equilibrium, t141 this 
effect is expected to be noticeable only for small enough T and p, e.g., 
for p ~< 0.2, but probably not for p ~> 0.3. In any case, we have studied in 
detail the nature of the phases for both p = 1/2 and p < 1/2, including 
comparisons with the equilibrium case. It is also interesting to see the 
apparently different nature of correlations for the gas phase at low and 
high temperature. 
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